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Abstract
We investigate the integrable (2+1)-dimensional (modified) Heisenberg
ferromagnet (HF) model using the prolongation structure theory. For
the integrable (2+1)-dimensional modified HF models, the corresponding
geometrical equivalent counterparts, such as the (2+1)-dimensional nonlinear
Schrödinger equation and the coupled (2+1)-dimensional integrable equations,
are also presented through the motion of Minkowski space curves endowed
with an additional spatial variable.

PACS numbers: 02.30.Ik, 02.40.Hw, 75.10.Hk

1. Introduction

The prolongation structure theory proposed by Wahlquist and Estabrook [1] is a very useful
and effective tool in the analysis of (1+1)-dimensional integrable systems. On the basis of
this theory, the (1+1)-dimensional integrable (modified) HF models have been investigated
in [2, 3]. Moreover, in terms of the motion of curves in Euclidean and Minkowski space,
their geometrical equivalent counterparts have also been given there, such as focusing and
defocusing nonlinear Schrödinger equations NLS± and the coupled integrable equation derived
by Nakayama [4].

With the successful application of Wahlquist and Estabrook’s prolongation structure
theory, a prolongation structure method to discuss an evolution equation in two spatial
dimensions was proposed by Morris [5], but its further applications to the (2+1)-dimensional
integrable systems are fewer in number. The reason lies in the fact that equations with
more independent variables do not possess nontrivial finite-dimensional coverings [6]. The
Heisenberg ferromagnet (HF) model is an important integrable system. Many efforts have been
devoted to the study of its (2+1)-dimensional extensions [7, 8]. The question that naturally
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arises is whether the prolongation structure method can be used to investigate the (2+1)-
dimensional (modified) HF models. The purpose of this paper is to give affirmative answer to
this question. Note that the spectral parameter in the Lax representation of (2+1)-dimensional
integrable HF model can be dependent on the time and space variables. Therefore, in this
paper, we shall consider the case of general prolongations of Morris’s theory and apply it to
analyse the (2+1)-dimensional integrable (modified) HF model.

2. The (2+1)-dimensional integrable Heisenberg ferromagnet model

The well-known (1+1)-dimensional integrable HF equation is given by

St = S × Sxx, (1)

where the subscripts stand for partial derivatives, S = (S1, S2, S3) is the spin vector with
S2 = 1 and ‘×’ denotes the cross product. Its (2+1)-dimensional integrable extensions have
drawn wide interest. A simple (2+1)-dimensional integrable HF equation is given by [8]

St = {S × Sy + uS}x, ux = −S · (Sx × Sy). (2)

We now analyse this equation by using the prolongation structure theory. Let us first consider
the case for St = 0 in (2). Setting W = Sx, T = Sy and taking S, T, W and u as the new
independent variables, we can define the following set of two-forms,

αa = dSa ∧ dx − Ta dy ∧ dx, αa+3 = dSa ∧ dy − Wa dx ∧ dy,

αa+6 = (W × T)a dx ∧ dy + (S × dT)a ∧ dy + Sa du ∧ dy + uWa dx ∧ dy,
(3)

α10 = du ∧ dy + S · (W × T) dx ∧ dy, αa+10 = dTa ∧ dy + dWa ∧ dx,

α14 = (T · W) dx ∧ dy + Sa · dTa ∧ dy,

where a = 1, 2, 3, such that they constitute a closed ideal I = {αi, i = 1, 2, . . . , 14}. When
these two-forms are null, it leads to (2) in which St = 0. In order to establish the prolongation
structure, we extend the above ideal I by adding to it a set of one-forms,

�k = dξk + Fk(x, y, S, T, W, u)ξk dx + Gk(x, y, S, T, W, u)ξk dy, k = 1, 2, . . . , n,

(4)

where ξk is the prolongation variable. The extended ideal must be closed under exterior
differentiations, i.e.,

d�k =
14∑
i=1

gkiαi +
n∑

j=1

ζ k
j ∧ �j, (5)

where gki and ζ k
j are some sets of 0-forms and 1-forms, respectively. On imposing this

requirement, we obtain the following set of partial differential equations for Fk and Gk ,

∂F k

∂Ta

= ∂F k

∂Wa

= ∂F k

∂u
= 0,

∂Gk

∂Wa

= 0,

−∂F k

∂Sa

Ta +
∂Gk

∂Sa

Wa − ∂Gk

∂u
S · (W × T) +

∂Gk

∂Ta

{[S × (W × T)]a (6)

− Sa(T · W) + u(S × W)a} − [F,G]k +
∂Gk

∂x
− ∂F k

∂y
= 0,

where

[F,G]k ≡
n∑

l=1

F l ∂Gk

∂yl
−

n∑
l=1

Gl ∂F k

∂yl
.
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By solving (6), we have the following solution,

F = λ

3∑
i=1

SiXi, G = u

3∑
i=1

SiXi +
3∑

i=1

(S × T)iXi,
∂λ

∂y
= 0, (7)

where Xi, i = 1, 2, 3, depend only on the prolongation variables ξk and have the commutation
relation of the su(2) Lie algebra.

Let us now turn to discuss the case for equation (2). We define a set of 3-form αi as
follows,

αa = dSa ∧ dx ∧ dt − Ta dy ∧ dx ∧ dt, αa+3 = dSa ∧ dy ∧ dt − Wa dx ∧ dy ∧ dt,

αa+6 = (W × T)a dx ∧ dy ∧ dt + (S × dT)a ∧ dy ∧ dt + Sa du ∧ dy ∧ dt

+ uWa dx ∧ dy ∧ dt − dSa ∧ dx ∧ dy,
(8)

α10 = du ∧ dy ∧ dt + S · (W × T) dx ∧ dy ∧ dt,

αa+10 = dTa ∧ dy ∧ dt + dWa ∧ dx ∧ dt,

α14 = (T · W) dx ∧ dy ∧ dt + Sa · dTa ∧ dy ∧ dt,

where a = 1, 2, 3, such that they constitute a closed ideal. When these two-forms are null, we
recover (2). According to the prolongation structure theory of Morris [5], we may introduce
the following two-forms,

�
k = �k ∧ dt + Hk

j ξ j dx ∧ dy +
(
Ak

j dx + Bk
j dy

) ∧ dξ j , k = 1, 2, . . . , n, (9)

Note that the case of the general prolongations is considered here. Therefore, we demand that
the matrices of A and B depend on the variables (x, y, t) and the form of �k is given by (4),
in which λ depends on the variables (x, y, t) and λy �= 0 due to the new variable t. It is easily
shown that

d�
k =

14∑
i=1

gkiαi +
n∑

j=1

ζ k
j ∧ �

j
, (10)

provided that the matrix H is given by

H = GA − FB + Ay − Bx (11)

and

dH ∧ dx ∧ dy − ∂G

∂Ta

(S × dS)a ∧ dx ∧ dy − λySaXa dx ∧ dy ∧ dt

−AtG dx ∧ dy ∧ dt + BtF dx ∧ dy ∧ dt = 0. (12)

Substituting expressions (7) of F and G into (11) and (12), we obtain

A = 0, B = 1

λ
I, (13)

and

λt = −λλy, λx = 0. (14)

By restricting (9) on the solution manifold, we obtain the Lax representation of the
(2+1)-dimensional integrable HF equation ({2})

ξx = −F |Xi= i
2 σi

ξ = − iλ

2

3∑
i=1

Siσiξ,

ξt = − 1

B
ξy − 1

B
G|Xi= i

2 σi
ξ (15)

= −λξy − iλ

2

3∑
i=1

[uSiσi + (S × T)iσi]ξ,
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where σi, i = 1, 2, 3, are Pauli matrices, and the spectral parameter satisfies the nonlinear
equation (14).

The space curve formalism plays an important role in the understanding of the nonlinear
integrable equations. By associating with the motion of Euclidean space curves endowed with
an extra spatial variable, Lakshmanan et al showed that the (2+1)-dimensional extension of
HF model (2) is actually geometric equivalent to the (2+1)-dimensional NLS+ [9],

iψt − ψxy − Rψ = 0, Rx = 1
2∂y |ψ |2. (16)

Its Lax representation is given by

	x = U	, 	t = V 	 + λ	y, (17)

in which

U =
(

iλ/2 ψ/2
−ψ∗/2 −iλ/2

)
, V =

(− i
2R − i

2ψy

− i
2ψ∗

y
i
2R

)
, (18)

and the spectral parameter satisfies (14).

3. The (2+1)-dimensional integrable modified Heisenberg ferromagnet model

The (1+1)-dimensional integrable modified HF equation is given by

St = S ×̄ Sxx, (19)

where S = (S1, S2, S3) with S2 ≡ S ◦ S ≡ S2
1 + S2

2 − S2
3 = ±1 and S3 > 0, and ×̄ denotes the

pseudo-cross product, i.e., S ×̄ Sxx = (
S2S3xx

− S3S2xx
, S3S1xx

− S1S3xx
,−S1S2xx

+ S2S1xx

)
. In

this section, using the prolongation structure method as done in the previous section, we shall
analyse the (2+1)-dimensional extensions of (19) and give their corresponding geometrical
equivalent counterparts.

A (2+1)-dimensional integrable modified HF model which is gauge equivalent to the
(2+1)-dimensional NLS− is given by [10]

St = {S ×̄ Sy + uS}x, ux = S ◦ (Sx ×̄ Sy), (20)

where S ◦ S = S2
1 + S2

2 − S2
3 = −1.

As in the previous section, setting W = Sx, T = Sy and taking S, T, W and u as the new
independent variables, we can define a set of two-forms

α̃a = dSa ∧ dx − Ta dy ∧ dx,

α̃a+3 = dSa ∧ dy − Wa dx ∧ dy,

α̃a+6 = (W ×̄ T)a dx ∧ dy + (S ×̄ dT)a ∧ dy + Sa du ∧ dy + uWa dx ∧ dy,
(21)

α̃10 = du ∧ dy − S ◦ (W ×̄ T) dx ∧ dy,

α̃a+10 = dTa ∧ dy + dWa ∧ dx,

α̃14 = (T ◦ W) dx ∧ dy + S ◦ dT ∧ dy,

where a = 1, 2, 3, such that they constitute a closed ideal Ĩ = {α̃i , i = 1, 2, . . . , 14}. When
the above two-forms are null, we recover (20) for the case of St = 0. Then we extend the
above ideal Ĩ by adding to it a set of of one-forms,

�̃k = dξ + F̂ k(x, y, S, T, W, u)ξ dx + Ĝk(x, y, S, T, W, u)ξ dy, k = 1, 2, . . . , n,

(22)
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where ξk is prolongation variable. By requiring the ideal Î = {α̃a, �̃
k} to be closed under

exterior differentiation, we obtain the following set of partial differential equations for F̂ k

and Ĝk ,

∂F̂ k

∂Ta

= ∂F̂ k

∂Wa

= ∂F̂ k

∂u
= 0,

∂Ĝk

∂Wa

= 0,

−∂F̂ k

∂Sa

Ta +
∂Ĝk

∂Sa

Wa +
∂Ĝk

∂u
S ◦ (W ×̄ T) +

∂Ĝk

∂Ta

{[S ×̄ (W ×̄ T)]a + Sa(T ◦ W) (23)

+ u(S ×̄ W)a} − [F̂ , Ĝ]k +
∂Ĝk

∂x
− ∂F̂ k

∂y
= 0,

where

[F̂ , Ĝ]k =
n∑

l=1

F̂ l ∂Ĝk

∂yl
−

n∑
l=1

Ĝl ∂F̂ k

∂yl
.

By solving (23), we obtain

F̂ = λ

3∑
i=1

SiX̂i, Ĝ = u

3∑
i=1

SiX̂i +
3∑

i=1

(S ×̄ T)iX̂i ,
∂λ

∂y
= 0, (24)

where X̂i, i = 1, 2, 3, depend only on the prolongation variables ξk and have the commutation
relation of the su(1, 1) Lie algebra.

Similar to that of the (2+1)-dimensional integrable HF equation, we now define the
following set of 3-form α̂i

α̂a = dSa ∧ dx ∧ dt − Ta dy ∧ dx ∧ dt,

α̂a+3 = dSa ∧ dy ∧ dt − Wa dx ∧ dy ∧ dt,

α̂a+6 = (W ×̄ T)a dx ∧ dy ∧ dt + (S ×̄ dT)a ∧ dy ∧ dt + Sa du ∧ dy ∧ dt

+ uWa dx ∧ dy ∧ dt − dSa ∧ dx ∧ dy, (25)

α̂10 = du ∧ dy ∧ dt − S ◦ (W ×̄ T) dx ∧ dy ∧ dt,

α̂a+10 = dTa ∧ dy ∧ dt + dWa ∧ dx ∧ dt,

α̂14 = (T ◦ W) dx ∧ dy ∧ dt + S ◦ dT ∧ dy ∧ dt,

where a = 1, 2, 3, such that they constitute a closed ideal. Then we introduce the following
two-forms,

�̂k = �̃k ∧ dt + Ĥ k
j ξ

j dx ∧ dy +
(
Âk

j dx + B̂k
j dy

) ∧ dξ j , k = 1, 2, . . . , n, (26)

where the matrices of Â and B̂ depend on the variables (x, y, t) and the form of �̃k is given
by (22), in which λ depending on the variables (x, y, t) and λy �= 0. It can be shown that

d�̂k =
14∑
i=1

f ki α̂i +
n∑

j=1

ηk
j ∧ �̂j , (27)

provided that the matrix Ĥ is given by

Ĥ = ĜÂ − F̂ B̂ + Ây − B̂x, (28)

and

dĤ ∧ dx ∧ dy − ∂Ĝ

∂Ta

(S × dS)a ∧ dx ∧ dy − λySaXa dx ∧ dy ∧ dt

− Ât Ĝ dx ∧ dy ∧ dt + B̂t F̂ dx ∧ dy ∧ dt = 0. (29)
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Substituting expressions (24) of F̂ and Ĝ into (28) and (29), we obtain

Â = 0, B̂ = 1

λ
I, (30)

and the nonlinear equation (14) for the spectral parameter λ.
By restricting (26) on the solution manifold, we obtain the Lax representation of (20)

ξx = −F̂ |Xi=τi
ξ = −λ

3∑
i=1

Siτiξ,

ξt = − 1

B
ξy − 1

B
G|Xi=τi

ξ

= −λξy − λ

3∑
i=1

[uSiτi + (S ×̄ T)iτi]ξ.

(31)

where τi are the generators of Lie algebra su(1, 1), i.e., τ1 = 1
2

(
1 0
0 −1

)
, τ2 = 1

2

(
0 −i

i 0

)
, τ3 =

1
2

(
0 i
i 0

)
.

In order to give the geometrical equivalent counterpart of (20), we identify S with the
tangent of a Minkowski space curve and endow the moving curve with an additional spatial
variable y. Thus equation (20) can be rewritten as

tt = tx ×̄ ty + t ×̄ tyx + uxt + utx, (32)

where the subscript x denotes the arc length parameter. On imposing the compatibility
condition txy = tyx, nxy = nyx, bxy = byx , we obtain the following y-part equations of the
orthogonal trihedral,

ty = ux

κ
b + ∂−1

x

(
κy +

τux

κ

)
n, ny = (

u + ∂−1
x τy

)
b + ∂−1

x

(
κy +

τux

κ

)
t,

by = −(
u + ∂−1

x τy

)
n +

ux

κ
t.

(33)

Substituting (33) and (A.1) into (32), we obtain

tt = 1
2 (−iψyN∗ + iψ∗

y N). (34)

Comparing (34) with (A.7), we have

γ = −iψy. (35)

Substituting (35) into (A.8), we obtain the well-known (2+1)-dimensional NLS−

iψt − ψxy + Rψ = 0, Rx = 1
2∂y |ψ |2. (36)

Its Lax representation is given by

	x = U	, 	t = V 	 + λ	y, (37)

in which

U =
(

iλ/2 ψ/2
ψ∗/2 −iλ/2

)
, V =

(− i
2R − i

2ψy

i
2ψ∗

y
i
2R

)
. (38)

and the spectral parameter satisfies (14).
Proceeding with the similar procedures as done to (20), we may get the following (2+1)-

dimensional integrable modified HF equation,

St = {S ×̄ Sy + uS}x, ux = −S ◦ (Sx ×̄ Sy), (39)
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where S ◦ S = 1. The corresponding Lax representation is given by

ξx = −λ

3∑
i=1

Siτiξ, ξt = −λξy − λ

3∑
i=1

[uSiτi + (S ×̄ T)iτi]ξ, (40)

and the spectral parameter satisfies

λt = λλy, λx = 0. (41)

We now associate the (2+1)-dimensional modified HF equation (39) with a moving
Minkowski space curve parametrized by the arc length x and endowed with an additional
coordinate y. Let us first consider the case: S = b. In this case equation (39) can be rewritten
as

bt = bx ×̄ by + b ×̄ byx + uxb + ubx. (42)

By requiring the compatibility conditions txy = tyx, nxy = nyx and bxy = byx , we obtain the
y-part equations of the orthogonal trihedral,

ty = −ux

τ
b + ∂−1

x (κy − ux)n, ny = ∂−1
x

(
τy − κux

τ

)
b + ∂−1

x (κy − ux)t,

by = −∂−1
x

(
τy − κux

τ

)
n − ux

τ
t.

(43)

Substituting (43) and (A.1) into (42) and comparing it with (A.10), we obtain

ζ̂ = −φ̂y, β̂ = ψ̂y. (44)

Then from (44) and (A.11), we obtain the following integral equation for ψ̂ and φ̂,

ψ̂ t + ψ̂xy − γ̂ ψ̂ = 0, φ̂t − φ̂xy + γ̂ φ̂ = 0, γ̂x = −∂y(φ̂ψ̂). (45)

Note that if the reduction ∂y = ∂x is imposed, then equation (45) reduces to the (1+1)-
dimensional coupled integrable equation derived by Nakayama [4]. The Lax representation
of (45) is given by

	x = U	, 	t = V 	 + iλ	y, (46)

in which

U =
(

iλ/2 φ̂/
√

2

−ψ̂/
√

2 −iλ/2

)
, V =


− γ̂

2
φ̂y√

2
ψ̂y√

2
γ̂

2


 , (47)

and the spectral parameter satisfies (41).
For the other case, i.e., S = n, we may rewrite (39) as

nt = nx ×̄ ny + n ×̄ nyx + uxn + unx. (48)

The compatibility conditions, txy = tyx, nxy = nyx and bxy = byx , give the following y-part
equations of the orthogonal trihedral,

ty = ub + ∂−1
x (κy + τu)n, by = ut − ∂−1

x (κu + τy)n,

ny = ∂−1
x (κy + τu)t + ∂−1

x (κu + τy)b.
(49)

Substituting (49) and (A.1) into (48) and comparing it with (A.13), we obtain

ζ̃ = −ψ̃y, β̃ = −φ̃y . (50)

Then from (50) and (A.14), we obtain the following integral equations:

ψ̃ t + ψ̃xy + ψ̃γ̃ = 0, φ̃t − φ̃xy − φ̃γ̃ = 0, γ̃x = −∂y(φ̃ψ̃). (51)
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Under the reduction ∂y = ∂x , equation (51) reduces to another (1+1)-dimensional coupled
integrable equation derived by Nakayama [4]. The Lax representation of (51) is given by (46),
in which U and V are given by

U =
(

iλ/2 −φ̃/
√

2

−ψ̃/
√

2 −iλ/2

)
, V =


 γ̃

2 − φ̃y√
2

ψ̃y√
2

− γ̃

2


 , (52)

and the spectral parameter satisfies (41).
To summarize, we have investigated the integrable (2+1)-dimensional (modified) HF

model by using the Morris’s prolongation structure theory. Note that the spectral parameter
in the Lax representation of (2+1)-dimensional integrable HF model can be dependent on the
time and space variables. Therefore, the case of general prolongations of Morris’s theory is
considered in this paper. For the integrable (2+1)-dimensional modified HF models, through
the motion of Minkowski space curves endowed with an additional spatial variable, we have
presented the corresponding geometric equivalent (2+1)-dimensional integrable equations,
especially the (2+1)-dimensional integrable extensions of the (1+1)-dimensional coupled
integrable equations derived by Nakayama [4] which, to our knowledge, have not been
reported so far. It should be pointed out that our approach can be used to analyse more
complex (2+1)-dimensional extensions of the (modified) HF model.
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Appendix. The motion of a curve in Minkowski space

The Minkowski space M3 is defined as a space to be the usual three-dimensional R-vector
space consisting of vectors {(x1, x2, x3)|x1, x2, x3 ∈ R}, but endowed with the inner product,
X ◦ Y = x1y1 + x2y2 − x3y3. The vector product of two vectors A and B can be defined by
requiring the relation, (A ×̄B) ◦ C = Det(A,B,C) for all C. Now we can define 3-frames
as follows. For two vectors e1 and e2, for which ei ◦ ei = ±1 and e1 ◦ e2 = 0, a third is
defined by e3 = e1 ×̄ e2, and these three vector form an orthonormal 3-frame. If we define
ε, η ∈ {1,−1} by e1 ◦ e1 = ε, e2 ◦ e2 = η, then it follows that e3 ◦ e3 = −εη. In this paper,
we take ε = −1 and η = 1. Let c be a curve in M3, which we assume is parametrized
by arc length s and satisfies c′′ ◦ c′′ �= 0. Then this curve induces a Frenet–Serret 3-frame
t = e1 = c′, n = e2 = c′′/

√|c′′ ◦ c′′|, b = e3 = e1 ×̄ e2, for which the following Frenet–Serret
equations hold,

ts = kn, ns = kt + τb, bs = −τn, (A.1)

where k and τ are the curvature and torsion of the curve, respectively, which is defined by the
relation k = e′

1 ◦ e2 and τ = e′
2 ◦ e3. Now we list some results in [3] on the evolution of the

curve in Minkowski space.

Formulation I. We introduce the following complex quantity N and Hasimoto function ψ ,

N = (n + ib) exp

(
i
∫ s

−∞
ds ′τ

)
, (A.2)
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ψ = k exp

(
i
∫ s

−∞
ds ′τ

)
. (A.3)

In terms of t, N and N∗, the Frenet–Serret equations (A.1) can be rewrite as

Ns = ψt, (A.4)

ts = 1
2 (ψ∗N + ψN∗). (A.5)

It is easily checked that the new frame t, N and N∗ satisfies the relations N · N∗ = 2, N · t =
N∗ · t = N · N = 0. The time evolution of N and t may be expressed as

Nt = iRN + γ t, (A.6)

tt = 1
2 (γ ∗N + γ N∗), (A.7)

where R(s, t) is real. Using the compatibility condition Nts = Nst , we get the time evolution
of the Hasimoto function ψ

ψt − γs − iRψ = 0, Rs = i
2 (γψ∗ − γ ∗ψ). (A.8)

Formulation II. Taking L = 1√
2
(n + t) exp

(− ∫ s

−∞ ds ′k
)

and M = 1√
2
(n − t) exp

( ∫ s

−∞ ds ′k
)
,

we may rewritten Frenet–Serret equations (A.1) as

bs = −φ̂L − ψ̂M, Ls = ψ̂b, Ms = φ̂b, (A.9)

where ψ̂ = 1√
2
τ exp

(− ∫ s

−∞ kds ′) and φ̂ = 1√
2
τ exp

( ∫ s

−∞ k ds ′). The time evolution of b, L
and M can be written as

bt = ζ̂L + β̂M, Lt = −β̂b + γ̂ L, Mt = −ζ̂b − γ̂ M. (A.10)

Using the compatibility conditions bst = bts , Lst = Lts and Mst = Mts , we get

ψ̂ t + β̂s − γ̂ ψ̂ = 0, φ̂t + ζ̂s + γ̂ φ̂ = 0, γ̂s − ζ̂ ψ̂ + β̂φ̂ = 0. (A.11)

Formulation III. Taking P = 1√
2
(b + t) and Q = 1√

2
(b − t), we may rewrite (A.1) as

ns = ψ̃P − φ̃Q, Ps = φ̃n, Qs = −ψ̃n, (A.12)

where ψ̃ = 1√
2
(k +τ) and φ̃ = 1√

2
(k−τ). The time evolution of n, P and Q may be expressed

as

nt = ζ̃P + β̃Q, Pt = −β̃n + γ̃ P, Qt = −ζ̃n − γ̃ Q. (A.13)

Using the compatibility conditions nst = nts , Pst = Pts and Qst = Qts , we get

ψ̃ t − ζ̃s + ψ̃γ̃ = 0, φ̃t + β̃s − γ̃ φ̃ = 0, γ̃s − β̃ψ̃ − ζ̃ φ̃ = 0. (A.14)
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